

 102

PART 2

A CONTEXTUALIZED

PRE-AP COMPUTER PROGRAMMING CURRICULUM:

MODELS AND SIMULATIONS FOR EXPLORING

REAL-WORLD CROSS-CURRICULAR TOPICS

 136

CHAPTER 2.

THE COURSE OUTLINE FOR CPRWE: COMPUTER PROGRAMMING

AS IF THE REST OF THE WORLD EXISTED

Section 1. Introduction

CPRWE (Computer Programming as if the Rest of the World Existed), is a

year-long introductory programming course intended to give students (1) a rigorous

overview of and basic literacy in the uses of a structured programming language, using

the Java-based language Processing; and (2) familiarity with algorithmic problem-

solving. Within the context of programs of mid-level complexity and size, and cross-

curricular fields of application (science, art, humanities), students learn the uses of

variables, Boolean expressions, and iterative and conditional control structures. They

learn to encapsulate code within methods, pass input (arguments) via parameters, and

calculate return values. Students learn to think of programs as interactions of objects

having attributes and methods that they describe in classes. They learn software

engineering principles for top-down design, resulting in hierarchically organized

programs for optimal maintenance, modification and extendibility. They examine criteria

for deciding which of competing code styles and algorithms to implement. Equally

important, they learn the possibilities for non-trivial applications of programming to

study and solve diverse problems across the STEM, Humanities and Arts curriculum. To

write accurate programs, students learn and use cross-curricular concepts from such core

areas as math (e.g. algebra, trigonometry), chemistry (electro-negativity, covalent and

hydrogen bonds) and biology (DNA structure and genetics). In order to give purpose and

context to the programming task, students study a film or play that situates the target

 137

problem within an historical / societal context. For example, in the Astronomy unit

(Galileo's Revolution), students build (a) a Copernican simulation of the solar system to

understand such observational phenomena as the phases of Venus, Mars in retrograde,

and the infrequency of solar eclipses; and (b) a Ptolemaic simulation (using epicycles) to

prove that such a model cannot account for all the phases of Venus. They then study

Bertolt Brecht's play Life of Galileo, and consider the repercussions of the discovery of

the phases of Venus (a) in accelerating the pace of both the scientific Renaissance and the

religious Reformation, and (b) in weakening the Church and eventually the monarchies of

Europe.

The course is divided into three sections:

a) Basic Programming Skills and Introductory Projects: Graphics basics, Primitive

Methods / Arguments, Coordinate Plane Manipulations, Processing Mouse and

Keystroke Events, Animation. setup() Initialization Code; draw() Animation

Code, User-Defined void Methods / Blocks / Indentation, Variables, System

Variables, Classes / Objects, Arrays, Iteration.

b) Building Programming Skills: Methods that return values, Primitive Types (int,

boolean), Method Parameters, Hierarchy / Nested Conditional Statements

c) Intermediate Projects: Software Engineering Principles, Multiple Structural

Recursion, Inheritance, Polymorphism.

The first section is intended as a "whole language" approach where students learn

to recognize and use basic programming components to build four dynamic art programs

sequenced in increasing levels of sophistication. The second section uses CodingBat to

help students gain proficiency in programming skills and recognize programming issues

 138

that involve Boolean logic, strings, arrays and iteration. The third section is comprised of

four multi-week projects where students build scaled down, but functional, applications

of real-life software programs, and use them to examine or solve specific problems in

government, geography, astronomy and molecular biology.

 139

Section 2. Piet Mondrian Painting

(PART I: INTRODUCTORY PROJECTS)

Essential Question

How does one design a computer program?

Supporting Questions

Where does a computer program begin execution?

What is a method?

How does a primitive method differ from a user-defined

method?

Does the order of arguments in a method call matter?

What is hierarchical organization?

What are the advantages to organizing one's code?

How do syntax errors differ from logic errors?

How do methods that set modes operate?

How does one fix bugs in a program?

How does the RGB color system – and transparency – work?

Description

The unit introduces students to the Processing programming environment and

familiarizes them with its inverted Cartesian coordinate plane (origin at the upper left

corner). They learn basic drawing and mode methods for rendering regular and irregular

shapes. They learn the programming concept of hierarchical organization by defining

methods with meaningful names and grouping primitive functions into the method

bodies. They learn to call these methods sequentially in the program's entrance point

method setup(). They learn indentation conventions to organize lines of code for

legibility. They learn to add comments to their program to clarify intent. They learn that

the settings of mode methods persist beyond the methods in which they are used – until

they are next changed. They learn simple debugging techniques for locating the source

of logical errors. They learn about programming language syntax, such as matching

parentheses and curly braces, and the order of method arguments; they learn to debug

syntax errors. Students learn the RGB color system and transparency.

 140

Key Assignments

 Following an introduction to the Processing programming environment and basic

drawing methods, students are given an image of the Piet Mondrian painting and shown

how to determine coordinates of rectangle vertices and line endpoints using the system

tool Paint.

Students then write a hierarchically organized program that renders a full-scale and

close approximation of the image. In the course of completing the task, students:

1. Create parameter-less user-defined methods made up of primitive methods.

2. Call primitive methods using the correct coordinates and widths/heights.

3. Call user-defined methods in setup();

4. Use primitive mode methods at the beginning of each user-defined method to avoid

persistence side-effects.

5. Employ simple debugging strategies to locate and correct syntax and logic errors.

Teaching Strategies

Instructor uses direct whole-class instruction to demonstrate the Processing

programming environment and its inverted Cartesian coordinate plane (origin in the

upper left corner) as students practice at their workstations and instructor and advanced

students circulate to help students having problems. Instructor similarly guides students

through the use of basic drawing methods, and accessing/reading online documentation.

Using guided discovery, students learn by examining program output: (a) how colors are

defined using RGB values; and (b) what the various attributes do that mode methods set.

 141

Instructor clarifies how primitive methods work by using counterexamples, e.g. a

different ordering of primitive methods or method arguments (signatures), to show

incorrect or unintended program output.

Instructor helps students individually and via direct whole class instruction to

debug syntax and logic errors in their program. Syntax errors in this assignment are

limited to orphaned opening or closing curly brackets or parentheses; and using a

different ordering or number of method arguments than those specified in the

documentation. Instructor teaches (a) students to recognize these specific errors, (b)

procedures for avoiding these errors, and (c) simple strategies for locating these errors

when they occur (commenting out lines, use of auto-indent feature). The most common

logical error in this assignment is calling a mode method in one part of the program and

not resetting the attribute in a subsequently called method. Teacher shows students that

routinely calling mode methods at the beginning of user-defined methods, though

seemingly repetitive, avoids this kind of error. Instructor shows students the use of print

statements and comments for debugging logic errors.

 142

Section 3. Ricocheting Comets

Essential Question

How does one program the simulation of movement?

Supporting Questions

How can the draw() method be used to simulate

movement?
What is difference between using the background()

statement in setup() vs. draw()?

How are variables in programming similar to and different

from variables in Algebra?

How and where do you declare, initialize, use and update

variable values?

What is an assignment statement, and what are the various forms it can take?

What is a system variable? [width, height]?

When in the execution of a program do system variables acquire meaningful values?

How can a conditional statement detect when an object reaches a specific location?

What's the relationship between a dividend being evenly divisible by a divisor and the

MOD function?

Why use parentheses in conditional expressions if there is no difference in expression

evaluation, i.e. if order of operator precedence yields the same result?

How do you use a variable to set the speed or direction of an object?

What does the random() method do; in what kind of situations would you want to use it?

How does a class allow you to create multiple objects of a given type?

What are instance variables?

What is a class constructor?

What's the difference between a class and an object?

How does a class allow you to alter attributes of objects so that they look and behave

differently?

Description

This unit introduces students to programming strategies that simulate movement.

Students learn to combine the use of drawing methods, variables and conditional

statements to move a circular object across the screen and make it ricochet off the edges.

Students learn the modulus function and some of its uses in conditional statements.

They learn the advantages to using variables instead of hard-coded values. Students learn

to combine simple conditions into complex conditional expressions using the logical

AND && and OR || operators. They learn to use parentheses inside of complex

 143

conditional expressions in order to make the intent of their code clear and to avoid

ambiguity. They learn how to use the random() method to dynamically change the color

of objects. Students learn to define classes and use them to instantiate multiple objects

of that class.

Key Assignments

 The instructor guides students through the construction of a small program in

which a circular object moves horizontally, reversing direction when it reaches the left

and right edges of the window. Students then:

1. Write a program in which a circular object moves vertically, bouncing off of the top

and bottom edges.

2. Write a program in which a circular object moves diagonally and ricochets off each of

the four edges.

3. Modify #2 so that the circular object simulates realistic ricocheting behavior, i.e.

bounces when its outer edge touches the boundary, rather than its center.

4. Calculate algebraic expressions for the slopes of the diagonal segments; and calculate

the slope-intercept form of the equations for the lines lying on those diagonal

segments.

In the course of completing these tasks, students learn to create different variables, each

of which accomplishes a single task. For example, they must create separate variables for

horizontal and vertical movement (position and increment); they must create a radius

variable for modeling an object's outer edge.

 144

Instructor introduces students to the random() method, and shows them how it can be

used to change the color of an object. Students then:

5. Modify program #3 to change the color of the circular object whenever it bounces off

of an edge.

Instructor shows students the syntax for defining a class. Instructor shows how to

write a constructor for initializing an object's attributes, and how to transfer the code

developed previously into class methods with meaningful names. Instructor shows

students how to instantiate an object of the new class, and how to call the object's

methods in setup() and draw(). Students then:

6. Add 15 objects to the program, each having different starting directions and speeds.

Finally, instructor shows students how to use a combination of transparency values

and drawing methods to give the illusion of a fading trail to a moving object. Students

then:

7. Modify their programs to give the illusion of fading trails to their moving objects.

 145

8. Students solve a series of increasingly complex problems using the 200-circle matrix

program (above), modifying only the conditional statement to produce the correct output

of correctly numbered red circles. For example, the conditional statement that produces

the output shown above is:

if (i % 3 == 0) {

drawRedCircle(i);

}

Teaching Strategies

Instructor uses direct whole-class instruction, and circulates to help students.

Students learn by guided discovery, observing the runtime output of counterexamples.

Two cases detailed below show the use of these strategies.

1. When first coding the conditional statement to detect when the object reaches

the window's right edge, after initializing the program with a size(800,600)

statement, students generally write: if (x == 800). When we change either the

starting x position or the increment so that x will leapfrog over 800, students modify this

expression to if (x > 800). Instructor then demonstrates the system variable

width, and how it takes the value of the first argument to the size() method.

Instructor then directs students to change the first size() argument from 800 to 700.

Students observe that the object goes past the right edge, but eventually reappears in

reverse direction. Instructor asks students to modify the program so that the object will

ricochet at the right edge no matter what the width of the window is. Although several

students will change the conditional expression to if (x > width), a common error

is for students to simply replace 800 with 700. Eventually, with enough prodding,

 146

students make the correct change and come to understand the power of variables to make

a program behave properly with varied input.

2. When teaching how the random() method operates, students are presented

with an alternate way of coding the part of their program that changes the color of their

objects once they ricochet. The original code is:

this.clr = color(random(256), random(256), random(256));

The new code is:

color newColor = random(256);

this.clr = color (newColor, newColor, newColor);

Without running the program, the question is put to the class whether the new code will

have output equivalent to the original. After discussion, everyone tests the code and sees

the different output, now limited to grayscale colors, rather than the full palette. Each

student is asked to write a paragraph explaining why the new code results in different

output. Students are then asked to modify the new code, all the while maintaining use of

the newColor variable, and make it work (spoiler: use 3 variables). It is through these

series of experiments that students learn to appreciate not just how the random() method

works, but to recognize that misunderstanding of an API method can lead to logic errors

because the programmer may use it incorrectly.

When teaching students how to reverse an object's direction, students are

prompted to come up with several code fragments for reversing the sign of a number, for

example:

n = -n;

n = n * -1;

n *= -1;

n = n – (2 * n); // which simplifies to the first statement

 147

Counterexamples are also used in direct whole class instruction when introducing logical

AND and OR expressions. Venn diagrams and number lines are used to graphically

illustrate the difference between AND and OR, and to teach that AND corresponds to the

SET concept of INTERSECTION, and OR corresponds to the SET concept of UNION.

Instructor distributes the Excel worksheet

(at right) that only allows students to change the

value in cell B2 (the divisor value). Through

experimentation, students study the patterns of

output when doing integer division (quotient) and

modulus operations given dividend and divisor as

inputs, and deduce that a modulus output of zero

indicates that a dividend is evenly divisible by a divisor.

In direct whole class instruction, example practice problems using the 200-circle

matrix program are demonstrated to get students started on the task. Below is the output

showing the difference between && (intersection) and || (union). Students also recognize

that the && expression is equivalent to i % 12 == 0 and can be used to reveal the lowest

common denominator.

i % 4 == 0 && i % 6 == 0

(intersection)

i % 4 == 0 || i % 6 == 0 (union)

 148

Section 4. Rotating McClure Painting

Essential Question

How is a single method able to do different things?

Supporting Questions

What is iteration? Why use it?

How do for-loops allow you to do repetitive tasks or

calculations?

What are the advantages to using a list (array)?

How are members of a list different from variables of

the same type?

Can a Java list contain objects of more than one type?

What is the connection between iteration and lists?

What kinds of programming errors cause side-effects?

How can programmers avoid coding side-effects?

How do you determine the order that you list parameters when defining a method?

Does the order that you do transformations (translate, rotate) matter?

Is math always involved when writing graphics programs?

Description

Students analyze a geometric image of a hexagonal painting. They recognize that

the hexagon is composed of 3 identically shaped rhombuses (although component colors

vary), and hypothesize that the program can draw the entire image by coding for the

display of just one rhombus, then "rotating the drawing code" twice. Instructor gives

students a helper-program that will create the code for a Java array of Points as they click

on the 38 vertices of the 12 irregular polygons that make up each rhombus. Students

splice this array into the beginning of their program, tweak vertex values for accuracy,

and use the indexed points to write 12 methods for drawing the irregular polygons.

Student write the methods by bookending vertex() method calls – which use indexed

points as parameters – between beginShape() and endShape(CLOSE). Students then

encapsulate these 12 methods into a higher-level method called drawRhombus(), which

 149

is placed in setup() [because the image does not (yet) move, there is no need to involve

the draw() method at this point].

Students learn to code for the transformation by using the sequence: translate() -

rotate(), which will translate the drawing plane's origin to the center of the figure, then

rotate the drawing plane 120º in either direction before drawing the second and third

rhombuses. Because Processing's rotate() method takes radians as input (rather than

degrees), students learn the definition of radian and the common equivalents for standard

angles (multiples of 30º and 45º). They are also shown the radians() method, that lets

them simply wrap it around the more familiar degrees measures.

Students must also write a method translatePoints() that will translate each

member of the Points array in the direction opposite to the translated origin in order to

keep the hexagon center in the middle of the window. Prior to attempting this task,

students gain a working knowledge of the initialization, condition, and increment parts

of the regular for-loop.

To paint the rhombuses with the correct colors, students analyze the image for

color patterns. They discern that there are 4 sets of 3 identically colored (red, green,

white, black) polygons in each rhombus (1-5-7, 2-8-11, 3-10-12, 4-6-9). Each rhombus,

however, colors the 4 sets differently. Student add four parameters to the

drawRhombus() method. They then consider two methods for solving the problem: (a)

leave the 12 polygon methods in number sequential order, and use 12 color-setting mode

calls, one preceding each polygon method, or (b) regroup the 12 polygon methods

according to their color set and precede each of the 4 groups with a color-setting mode

 150

call. For further clarity, students create 4 local color variables for use as arguments in

the drawRhombus() method call.

Finally, students make the image dynamic by moving the 3 drawRhombus() calls

to draw(), and creating a global angle variable that is incremented at the end of draw().

This revisits the movement programming mechanism used in Ricocheting Comets, but

for angular, rather than lateral, movement.

Key Assignments

1. Using the helper-program, students place a functioning code fragment for the Points

array at the beginning of their McClure program.

2. Using the Points array's indexed point variables, students create 12 parameter-less

methods for drawing the 12 irregular polygons in a single representative rhombus,

and place these methods in a working higher-level user-defined method called

drawRhombus().

3. Students write a method called translatePoints() that recalculates the Points array

coordinates so that the center point's coordinates is at the origin (0, 0).

4. Students write code for the translation and rotation transformations that allow one

to draw the other two rhombuses with drawRhombus().

5. Students add 4 color parameters to drawRhombus() and modify the method body to

paint each rhombus with the correct colors.

6. Students declare, initialize, use (with an additional rotate() call) and update a

variable named angle that allows the image to rotate.

 151

Teaching Strategies

Instructor uses modeling to help students understand the geometric

transformation the program uses to draw the 2
nd

 and 3
rd

 rhombuses. The model likens the

graphic drawing plane to a large sheet of paper, and the drawRhombus() method to a

stamp. If one imagines that the paper does not move, then one must rotate the stamp to

draw the 3 rhombuses. Implementing this would require the programmer to calculate a

complete set of vertex coordinates for each of the 2 additional rotated rhombuses.

Instead, the preferred method is to consider the drawRhombus() method as fixed, and to

simply rotate the sheet of paper beneath it before "stamping" it. Instructor also makes

an analogy to drawing a circle with a compass, using each of these procedures. Because

the point of rotation is the paper's origin (top-left), a translate method needs to reposition

the origin at the center of the hexagon prior to the rotation operation.

Using the 200-circle matrix program, Instructor uses guided discovery so that

students see the effect of changing the initialization, condition and increment parts of

the for-loop code that draws the red circles. In this way, students gain a working

knowledge of how these 3 parts work together to perform an iterative task.

Instructor uses guided discovery to help students figure out how to write the

translatePoints() method that will adjust the coordinates of the Points array so that the

center point moves to (0, 0), and the remaining 37 points are translated an identical

amount. Using a for-loop, students adjust point[0] and subtract its coordinates from the

successive 37 points. Output shows that only point[0] has been modified. Instructor

directs students to set the initialization part of the for-loop to 1 rather than 0. Students

observe that the output is correct for all but the center point. Instructor asks students to

 152

figure out why these side-effects occur. Students finally discover that they need to save

off the original coordinates of point[0], then subtract these from all 38 points in the array.

Students are thus made aware of the phenomenon of unintended side-effects that stem

from altering a variable referred to during the performance of a task.

 153

Section 5. Word Clouds

Essential Questions

What are the advantages to using classes in the organization of a program?

How does one isolate side-effects generated from transformation operations?

Supporting Questions

How is the pushMatrix()-popMatrix() combination similar in usage to the

beginShape()-endShape() pair encountered in unit 3?

How does the pushMatrix()-popMatrix() combination prevent side-effects?

How do you use the random() method to place a word object along a window edge?

What are the advantages to using a for-each loop over a regular for loop? Are the two

interchangeable?

How do you synchronize two or more events?

How do you write code to dynamically alternate between objects being in motion and

then at rest?

Description

This unit teaches students how to use write programs that draw text. Students

learn these new text methods, and are introduced to the for-each loop. They learn how to

isolate transformation operations needed to render each word from having side-effects on

subsequently drawn words by bookending commands between pushMatrix() and

popMatrix() calls. The Word Cloud program intertwines these new concepts with the

major programming concepts revisited from the first 3 units: variables, conditional

statements, Boolean expressions, arrays, classes, iteration and movement.

 154

Students spend time finding out about and experimenting with word clouds. They

find lengthy pieces of text ranging from essays to state documents, and use them as input

to any number of Internet word cloud programs referred by the Instructor. The instructor

guides the class through the construction a simple program that shows how to create

fonts and use them to output text. These methodologies are then encapsulated in a

DynamicText class whose constructor takes a list of parameters for text, font, size,

position, color, rotational angle and alignment. Students create an array of DynamicText

objects, and output them using a for-each loop. Instructor demonstrates how to create a

color-compatible background using text and a for-loop. Students use this code as a

model to write a new program that will create a densely packed word cloud design using

the most frequently occurring words in a student-chosen text passage.

To add motion, the instructor gives students a helper "edges" program to discover

how to write code that will place each word at a random starting location on any of the

four window edges. With instructor guidance, students discover a linear equation model

for synchronizing the starting and ending times of all words from their initial to final

locations. Lastly, students modify the program so that it cycles and spends equal time

between two states: (a) text objects moving from random positions on the edges to their

final positions, and (b) text objects remaining at the final positions to allow time for

appreciation of the final static design.

Key Assignments

1. After whole class instruction, students build a sample program that can output text of

varying colors, size, font, rotational angle, alignment, and position.

 155

2. Students build a program that outputs a static Word Cloud design.

3. Students modify their programs to output a dynamic Word Cloud where words appear

at random positions on the window's 4 edges, then drift for 3-4 seconds to their final

positions, where they come to rest for an equal period of time. Program cycles

"forever" between these two states.

4. Using the techniques they learned in #3, students revisit the McClure painting

program and modify it so that it will (a) alternate the direction of rotation, and (b)

change background colors every time it begins to rotate in the opposite direction.

Teaching Strategies

Using the helper-program Edges, students

examine two concepts: (a) randomly positioning (text)

objects at the four edges of a window; and (b)

mathematical variants for defining 4 random intervals,

and their resulting constraints on programming style

decisions.

Using whole class instruction, teacher guides students to discover what the x and

y coordinates have to be if an object is to appear at any random position on the left edge:

x = 0; y = random(0,height); Students sequester the code in a method called

leftEdge(), then write similar the method bodies for rightEdge(), topEdge() and

bottomEdge().

Instructor next guides students to discover 2 basic variants for defining 4 random

intervals of equal size:

 156

float n = random(0,4);

if (n < 1) { leftEdge(); }

else if (n < 2) { rightEdge(); }

else if (n < 3) { topEdge(); }

else { bottomEdge(); }

float n = random(0,4);

if (0 <= n && n < 1) { leftEdge(); }

else if (1 <= n && n < 2) { rightEdge();}

else if (2 <= n && n < 3) { topEdge(); }

else { bottomEdge(); }

Students are asked to consider the two code fragments for simplicity and clarity.

They are then asked to swap lines, e.g. swap lines 2 and 3. Students discover that this has

no effect on output for the second code fragment. However, in the first code fragment,

no circles appear on the right edge, i.e. the rightEdge() method is never called. Students

are asked to explain the phenomenon, and instructor illustrates the concept using (a) the

number line, and (b) rearranging a sequence of filters/sieves with increasingly larger

holes that are catching balls of various diameters, and so on.

To help explain saving/restoring of the drawing plane's state by pushMatrix()-

popMatrix() – used by the program to allows text objects to rotate independently –

instructor uses a camera metaphor, e.g. taking a snapshot of the drawing surface before

any translation/rotation operations, performing the transformations, then restoring the

prior state using the snapshot.

To derive expressions that allow the text objects to move (diagonally in most

cases) from initial positions to final positions, instructor guides students to calculate a

slope/intercept equation for both horizontal and vertical components of the motion. In

this case, however, x and y are the dependent variables and percent completion of motion

is the independent variable, with slope equal to the difference between final and starting

coordinates, and the y-intercept equal to the starting coordinate. Instructor gives students

 157

hints by asking what the x-coordinate would be at 0%, 100%, 50%, 25% (in that order)

and so on (Note: although we are calling the variable "percent" for ease of instructional

discussion, in a strict sense, it is in fact the fraction of movement traveled). Students are

thus guided to derive the equation for the x-coordinate (below). Once solved, students

are directed to derive the expression for the y-coordinate using the same methodology.

 float percent = this.timeCurrent / TOTAL_TIME;

 float xCurrent =

 (this.xEnd - this.xStart) * percent + this.xStart;

To make the objects rest for an equal amount of time, instructor directs students to keep

incrementing timeCurrent to twice the TOTAL_TIME before reverting back to zero.

Students observe that this causes each text object to travel twice as far, specifically 100%

beyond their final positions. The remedy is to simply cap percent at 100% for all values

above 100%:

float percent = this.timeCurrent / TOTAL_TIME;

if (percent > 1.0) {

percent = 1.0;

}

float xCurrent =

(this.xEnd - this.xStart) * percent + this.xStart;

 158

Section 6. CodingBat: Boolean logic, Strings and Arrays

(PART II: BUILDING PROGRAMMING SKILLS)

Description

CodingBat is a free site of live coding problems to build coding skill in Java…

The coding problems give immediate feedback, so it's an opportunity to practice

and solidify understanding of the concepts. The problems could be used as

homework, or for self-study practice, or in a lab, or as live lecture examples. The

problems … have low overhead: short problem statements (like an exam) and

immediate feedback in the browser.

- Codingbat.com/about.html

… Implicit in this is a [central] CodingBat idea: don't add complexity by making a

problem which is realistic or has a motivating back-story. Practice problems do

not need to be realistic. Instead, you want the description to be short and clear,

and you want to have lots of problems so the student can work lots of repetitions

(like exercise at a gym), building skill and confidence.

- Codingbat.com/authoring.html

At this point, students have had limited practice with most foundational

programming concepts within a (hopefully) motivating dynamic art context. Although

this should have given students a general framework for how computer programming can

be applied, at this point, they need to begin to acquire basic programming competence.

The intent is that students will not be learning disembodied skills, but rather will be

learning to hone and expand their skill applying specific programming concepts they've

already encountered within meaningful contexts.

Students now spend 6-8 weeks solving problems in 4 CodingBat modules:

Logic-1, String-1, Array-1 and Array-2. Logic-1 covers Boolean variables, use of

conditional statements (IF-ELSE, IF-ELSIF-ELSE, etc.), nested IF-ELSE statements, and

common introductory logic problems. String-1 covers the use of the methods length,

substring, startsWith, endsWith, isEmpty, equals and equalsIgnoreCase, as well as

the logic of how to access string index positions from the start, end or middle of a string.

 159

Array-1 covers simple problems in array creation, indexing and swapping of values.

Array-2 covers iteration through the members of the array, touching upon operations such

as: searching; determining aggregate values; locating specific subsequences; and

comparing adjacent member items.

The purpose of the module is to give students real programming competence

using basic programming control structures and concepts. Because there are both simple

and sophisticated ways of writing code to solve these problems, instructor requires that

students first use the simpler, clearer (and longer) coding styles until satisfied that

students understand the underlying logic and programming mechanisms. Instructor then

shows students how and why the more sophisticated (and shorter) coding styles are

equivalent.

Because solutions to CodingBat problems are rife throughout cyberspace, students

are only given credit when they pass 4 custom/teacher-written quizzes, one for each

module. These custom quizzes have the same format and style as all other CodingBat

problems, and are accessible from the teacher's individual CodingBat home page.

In addition, the solutions to some of the problems involve programming issues

that will arise in later projects, e.g. circular buffers (a clock). Because the CodingBat

website simply glosses over these issues, the unit devotes significant time to exploring

different ways of thinking about how one might model and program such systems, and

requires expository assignments where students must clearly define the problem and

explain how to code the solution.

 160

Key Assignments

1. Logic-1 Module and Custom Test

2. String-1 Module and Custom Test

3. Array-1 Module and Custom Test

4. Array-2 Module and Custom Test

Teaching Strategies

Solving the problems in CodingBat is a major hurdle for all students. There are many

ways/styles to write code that will solve the problems, and the solutions provided in the

Warm-Up and Help sections of the website do not provide the necessary scaffolding

required for most high school freshmen. Therefore, the teacher uses direct instruction to

help students understand how to solve the problems in the Warm-Up section. Although

each problem involves some new aspect or issue, the problem below can be used to

illustrate the teaching strategies used:

The parameter weekday is true if it is a weekday, and the parameter vacation is

true if we are on vacation. We sleep in if it is not a weekday or we're on vacation.

Return true if we sleep in.

The instructor first demonstrates how to build a 2-D table that represents all 4 cases:

 vacation !vacation

weekday T F

!weekday T T

Instructor then shows several ways to code the solution:

public boolean sleepIn(boolean weekday, boolean vacation) {

return !weekday || vacation;

}

public boolean sleepIn(boolean weekday, boolean vacation) {

if (vacation) {

return true;

}

else {

return !weekday;

}

}

 161

public boolean sleepIn(boolean weekday, boolean vacation) {

 if (vacation) {

 if (weekday) {

 return true;

 }

 else {

 return true;

 }

 }

 else {

 if (weekday) {

 return false;

 }

 else {

 return true;

 }

 }

}

For students who initially struggle, the last solution is longer, but simpler to understand

because each of the 4 possible combinations is represented. Once students see the code

working, the instructor can guide them to realize that the first if (vacation) statement can

be simplified because it always returns true, i.e. weekday is irrelevant to the return value.

i < 50 || i > 150 && i % 2 == 0

(i < 50 || i > 150) && i % 2 == 0

 162

Some problems in CodingBat can involve complex Boolean expressions which combine

the && and || operators. The 200-circle matrix program can show how && has higher

precedence than ||. The expression

i < 50 || i > 150 && i % 2 == 0

yields the pattern above top, demonstrating that && binds tighter than ||, even though the

expression is evaluated from left-to-right. When one adds parentheses to force the || to be

evaluated first, as in

(i < 50 || i > 150) && i % 2 == 0

the pattern is as shown above bottom. The moral of the story is ALWAYS use

parentheses to clarify the intention of the programmer.

Sometimes CodingBat problems inadvertently present common programming issues.

The problem below is an example:

We have a loud talking parrot. The "hour" parameter is the current hour time in

the range 0..23. We are in trouble if the parrot is talking and the hour is before 7

or after 20. Return true if we are in trouble.

The Boolean expression for the time period between 8 pm and 7 am (non-inclusive),

although written exactly as stated in the problem, is not intuitive because it spans the 0/24

boundary in the circular buffer representation of a clock. Normally a time interval

between an earlier and later time is written using an AND expression, e.g.

6 <= hour && hour <= 12, analogous to how one would write a range using an

algebraic expression: 6 <= hour <= 12. However, for intervals that span the boundary,

the expression is nonsensical:

20 < hour && hour < 7

 163

As illustration, the instructor uses Venn diagrams and the number line to demonstrate

how a number cannot simultaneously be in two disjoint sets. One solution is to view the

interval as the union of two intervals on either side of the boundary:

(20 < hour && hour < 24) || (0 <= hour && hour < 7)

However, because the range of times is limited to 0-23, there is no need for the conditions

in red. The expression simplifies to:

20 < hour || hour < 7

Because students will revisit such boundary problems in the cross-curricular units, they

are required to write clear, but short, answers to all 4 of the following questions (in

general, students who cannot do so do not yet have the abstraction abilities necessary to

succeed in a programming course).

1. What is the normal expression for a specific time period on a 24-hour clock?

(e.g. between 12 and 18)

2. What is the problem with a time period that spans the 0/24 boundary?

3. What is the full expression for a time period that includes both sides of the boundary?

Explain how you get this expression.

4. Why can you simplify this full expression by dropping the (0 <= hour) and

the (hour < 24)?

 164

Section 7. Nested For-Loops, Regular Patterns, and T-Tables

Description

This is a short unit that introduces students to nested for-loops and a

methodology for solving specific kinds of problems where these loops are used. Thirteen

problems from the exercises section at the end of Chapter 2 in Building Java Programs

were adapted for this unit. The problems involve using nested for-loops to produce

regular patterns of lined text output. In order to solve the problems, students must use

inductive reasoning to determine linear expressions that describe all lines in the output,

using line number as the independent variable. Students proceed by creating a T-table

describing the number of different categories of characters/numbers for each line. They

then graph the categories against line number and determine the slope of the resulting

line. Plugging in the slope and any single point into the slope-intercept equation allows

one to calculate the y-intercept. One now has a slope-intercept expression for each

category. These are used in the conditional part of the inner for-loops, and at times for

the output character itself, if it's a number. Below is an example pattern, a T-table, and

the nested for-loops where the derived expressions are used.

*|||||

**||||

***|||

****||

*****|

 165

line # * # |

1 1 5

2 2 4

3 3 3

4 4 2

5 5 1

6 6 0

Algebraic expressions line 6 - line

for (int line = 1; line <= 6; line++) { // outer loop

 // 1st inner loop prints asterisks

 for (int a = 0; a < line; a++) {

 out.printText("*");

 }

 // 2nd inner loop prints vertical bars

 for (int v = 0; v < 6 - line; v++) {

 out.printText ("|");

 }

 // after printing all the characters on the line,

 // go to the beginning of the next line

 out.printTextLine();

Key Assignments

13 Problems, including T-tables, graphs, Boolean expressions, and working code.

Teaching Strategies

Instructor uses whole-class direct instruction to go through the example described

in the outline.

Instructor also has students reverse the process, i.e. trace through the code for

several similar problems and show the output in both a T-table and console table for each

iteration and output statement. An example of such a reverse problem is shown below.

 for (int line = 1; line <= 5; line++) {

 for (int sp = 1; sp <= 5-line; sp++) {

 output.PrintText(" ");

 }

 for (int n = 1; n <= 2*line-1; n++) {

 166

 output.PrintText(line);

 }

 output.PrintTextLine(); // Enter Key

 }

Line # spaces # Number Number

1

2

3

4

5

Expression 5-line 2*line-1 line

Line 1

Line 2

Line 3

Line 4

Line 5

 167

Section 8. The Right to Vote

(PART III: INTERMEDIATE-LEVEL PROJECTS)

Essential Questions

How do you write a program to simulate an election, both the marking and counting of

thousands of ballots?

How is a program like this similar to software used to tally optical scan ballots?

Supporting Questions

Describe the flood fill algorithm?

Define recursion. What's the danger inherent in using recursion?

What is the difference between global and local variables?

How would one decide whether to use a global vs. a local variable?

Description

To give students background, they begin the unit by examining Palm Beach,

Florida's "butterfly ballot" from the Nov. 7, 2000 presidential election. Students watch

the film 2008 HBO film Recount about the electoral chaos in Florida which was resolved

on Dec. 12, 2000 by the U.S. Supreme Court decision that gave the election to George

Bush. Students also watch the 2004 HBO film Iron-Jawed Angels which tells the story of

the suffragist Alice Paul in the 8 years preceding the passage of the 19
th

 Amendment.

Students write an essay about the film in response to the prompt described in Key

Assignments.

 168

At the start of the unit's programming section, students are instructed to figure out

a way to mark the ballot above so that the entire white space within a circle is blackened.

Students opt for what they know: using the ellipse() method to fill in the circle.

However, because the border around the circles is pixilated, the rendering either leaves

some pixels unmarked, or draws over gray pixels outside of the circle's boundary. At this

point, Instructor introduces the recursive Flood Fill algorithm. Students reorder the

recursive calls in the floodFill() method in a helper program that slows down the

sequential filling in of the pixels; this allows students to see that the direction in which

pixels are being drawn corresponds to the order of the recursive calls. Students use this

information to write the body to a method named markBallot() that completely fills in a

white circle for a single candidate. Students write a second method markBallotX()

method that instead draws an X centered on a random location in the white circle, and

consider what criteria should be used to determine the voter's intent, i.e. how many pixels

in the white circle need to change color.

Students implement an Election class that marks and counts ballots. The method

markBallots() creates thousands of ballots (Ballot class objects) and uses the (revisited)

random() method to set the parameters for the percentages of the ballots that will be

marked for each candidate. They will also use random() to mark a certain percentage of

the ballots in some invalid way, such as for more than one candidate, or for no clear

candidate choice.

Students then implement the tallyElection() method, which iterates through the

ballot utilizing a countBallot() method that determines which candidate the voter

selected. The countBallot() method in turn must employ a readBallot() method that

 169

uses (revisited) nested for-loops to iterate through rectangular regions of the ballot

image's pixels. They consider three algorithms for dealing with invalid ballots when

implementing countBallot(): (a) Increment global variables for each candidate as marks

are encountered. When a ballot marked for two or more candidates is determined to be

invalid after it has already incremented their candidates' totals, it will be read a second

time to decrement and correct those same variables. (b) Examine a ballot first to

determine if it is valid. If so, read it a second time. (c) Read a ballot only once, but use

local variables in the countBallot() method to first collect counts for all candidates. If

the ballot is valid, use the local variable to increment the corresponding global variable.

Key Assignments

1. Students write an essay about the two films Recount and Iron-Jawed Angels, in

response to the prompt: The protagonists in both films used many strategies in their

efforts to reach their goals, both of which concerned voting rights. Describe key

strategies that each group used in order to try to attain their goal and how successful

each of those strategies was.

2. Students implement a strategy of their own design to mark a ballot for a candidate.

3. Students implement the flood-fill algorithm for fully marking a circle.

4. Students implement a method for marking the circle with an X.

5. Students implement an Election class with a method that returns an array of

thousands of ballots marked with specified percentages for various candidates.

6. Students implement a certain percentage of invalidly marked ballots.

 170

7. Students implement the readBallot() method that can determine the candidate(s)

marked on a ballot.

8. Students implement a countBallot() method that throws out invalidly marked ballots

and correctly increments the tally for the candidate marked.

9. Students implement the tallyElection() method that counts all the votes and reports

the election results.

Teaching Strategies

Counterexamples, guided discovery, revisiting concepts and experimentation.

When presenting the flood-fill algorithm, a helper-program is distributed to help

give students an intuitive feel for recursion's depth-first approach. The program

performs the floodFill() method, but instead of drawing the pixels in real time, saves

them in an array for drawing them slowly so that students can observe the sequence. The

multiply-recursive method floodFill() appears as follows:

void floodFill(int x, int y, color targetClr) {

 MyPoint pt = new MyPoint(x, y);

 color clr = get(x, y);

 if (clr == targetClr && !contains(pts, pt)) {

 pts.add(pt);

 floodFill(x, y-1, targetClr); // 1

 floodFill(x, y+1, targetClr); // 2

 floodFill(x-1, y, targetClr); // 3

 floodFill(x+1, y, targetClr); // 4

 }

}

As students experiment with rearranging the numbered lines, they can observe the

different directions in which the pixels are drawn.

The readBallot() method that examines a ballot's pixels revisits/reuses the nested

for-loop iterative control structure that students learned in the previous unit. The method

 171

looks at the circle next to each candidate and compares white pixels on the unmarked

ballot with corresponding pixels on the marked ballot – if the corresponding pixel is a

different color, the voter marked that candidate:

// returns candidate voted for (3-8) or 0 if invalid ballot

// x, y is the top left corner of a square bounding the

circle

// wh is the number of pixel rows/cols to process

boolean readBallot(int candidate) {

 int x = 453;

 int y = 34 * candidate - 68;

 int wh = 25;

 for (int row = x; row <= x + wh; row++) {

 for (int col = x; col <= y + wh; col++) {

 color clrU = img.get(col, row); // Unmarked Ballot

 color clrM = get(col, row); // Marked Ballot (screen)

 if (clrU == color(255) && clrM != clrU) {

 return true;

 }

 }

 }

 return false;

}

Instructor should point out the similarity of the structure of this nested for-loop to the

problems from Section 7. Instructor then should make the point that in both cases, the

code is processing a 2-D space / matrix row-by-row, from top-left to bottom-right.

 172

Section 9. Around the World in 24 Days

Essential Questions

How can software be used to study and solve

problems in Human Geography?

Supporting Questions

Why is there a need for the International

Dateline?

How can you use the sin and cos functions to

position objects around the edges of a circle?

Why does one need to treat the area around a

circle's 0º/360º boundary differently from the

rest of the circle?

How can one write a program that uses the same

code to handle both a stationary and rotating

Earth?

What types of discrepancies arise when one tries to use a discrete model to represent a

continuous system? What are some mechanisms to deal with these?

Description

Students build a simulation of a rotating Earth in order to model the phenomenon

described in Jules Verne's Around the World in 80 Days of an east-bound traveler who

circumnavigates the world and experiences one day more than an observer remaining at

the starting point. Three observers are placed on the surface, two of whom

circumnavigate the globe in opposite directions: (a) an East-bound traveler (yellow); (b) a

West-bound traveler (red); and (c) a stationary observer (white). After 24 days, the two

travelers return to the starting point to rejoin the stationary observer. The east-bound

traveler will have seen 25 sunrises, and the west-bound traveler will have seen 23

sunrises. The simulation sheds light on the reason for the establishment of the

International Date Line.

Students begin by downloading 96 satellite images of Earth using the View from

Earth website (http://www.fourmilab.ch/cgi-bin/Earth). These represent snapshots taken

 173

over a 24-hour period spaced at 15-minute intervals. So that the surface of the Earth is

half in shadow, the date chosen is either the Spring or Autumnal Equinox with Latitude =

90°N as if the satellite is positioned over the North Pole. Longitude is arbitrary, but 72°E

was chosen so that Los Angeles is at the top of the simulation.

Students load the images into an array and implement the animation using a

circular queue, which displays a stationary Earth with a moving terminator (the boundary

line separating day and night). Students are already familiar with Processing's 2-D

transformation operations from the Word Cloud and McClure units. They similarly

implement rotation by translating the coordinate system origin to the center of the

window, performing the rotation, and translating the origin back to the top left corner. As

in the Word Cloud unit, students again bracket transformations between pushMatrix()

and popMatrix() to independently rotate several objects simultaneously. The final

rotation effect is that the Earth rotates and the terminator is stationary. A toggle variable

controls rotation.

Earth, Sunrise and Traveler classes are implemented. A conditional expression

for enabling a stationary traveler to detect a sunrise is initially expressed using

normalized degree measurements to keep traveler and sunrise angles within the same

range. The conditional expression is modified as more cases are accommodated,

culminating with a solution for the edge condition at 0°/360°. The final expression

implements a sector-point intersection model.

Movement for travelers is implemented using a speed instance variable which is

positive for traveling west; negative for traveling east; or 0 for no movement. Students

discover that sunrise detection breaks down for moving travelers: at some point during

 174

their circumnavigations - depending upon starting values for sunrise and traveler - the

East traveler misses a sunrise and the West traveler clocks a double sunrise. An analogy

to an escaping prisoner avoiding detection by a moving flashing searchlight is made. The

problem is solved by narrowing or expanding the sector by the traveler's speed, and

students consider the side-effects that occur when representing a continuous system with

a discrete model.

Key Assignments

1. Students download 96 images of Earth and create an animation showing a complete

24-hour light cycle. The animation is that of a stationary Earth and a moving solar

terminator.

2. Students implement an option for a stationary terminator and a rotating Earth.

3. Students implement an Earth class that does the bookkeeping involved in tracking

and incrementing its angular position.

4. Students implement a Traveler class – although the first Traveler object created is

stationary. Like the Earth, the Traveler keeps track of it angular position, and, when

the earth rotates, changes its angular position at an identical rate to maintain the same

location on the Earth. A Traveler object displays as a number, indicating the number

of sunrises it has "seen".

5. Students implement a Sunrise class to keep track of the terminator's angular position.

6. Students implement a normalize() method that keeps all angles in the range 0 <=

angle < 360.

 175

7. Students implement Traveler methods seeSunrise() and incSunrises(). The

seeSunrise() method revisits the boundary problem students first encountered in

CodingBat's parrotTrouble problem.

8. Students implement traveling for a Traveler object, using a speed variable.

9. Students correct the seeSunrise() method to account for the longer or shorter sector

width needed to detect a sunrise when a Traveler object moves east or west,

respectively. The length of the sector's arc is adjusted by the Traveler object's speed.

Teaching Strategies

Modeling, counterexamples, guided discovery and experimentation.

To familiarize students with animation concepts, at the start of the unit, students

write a program that animates Eadweard Muybridge's galloping horse photographs. The

animation shows that all four feet of a horse are simultaneously off the ground at one

point during a gallop cycle. Instructor stresses that this phenomenon is easier to grasp by

seeing it in context within an animation rather than as a single still photograph.

Students revisit the edge/boundary problem they encountered when crafting the

conditional expressions for CodingBat's parrotTrouble problem.

When implementing display() for the Traveler object, students are instructed to

keep the number at the same position "height" above the Earth no matter the Traveler's

angular position. This involves explicitly calculating the left and top coordinates for the

text() method (mathematically centering the number about its (x, y) position), then using

the API's textAlign() method. When students asked why they had to bother calculating

the left and top coordinates, only to comment out the code, the instructor tells them that

 176

these are the same calculations the textAlign() method makes to center text horizontally

and vertically.

Figure 15A. East bound traveler is just to

the west of the sector at Time 1.

Figure 15B. East has moved just to the

east of the next sector at Time 2.

No sunrise is detected!

To model the side-effect of using a discrete model with a constant sector width

for traveling objects, the instructor distributes a Moving Traveler program that illustrates

how, if the coordinates are inauspicious, an east-bound traveler can miss detection of a

sunrise (Figure 15) and how a west-bound traveler can detect the same sunrise twice

(Figure 16). The program shows the overlap between sector and traveler and records a

sunrise event at these junctions.

The program also allows the user to widen or narrow the sector in order to

illustrate how this adjustment can correct the detection errors (Figures 17 and 18). Note

that the adjustment to the sector width occurs at the tail end (eastern edge), and the

amount of the adjustment is the distance the traveler moves during an interval.

To assess understanding, students are instructed to write two paragraphs

describing how each of the two errors occur and how each is corrected by an appropriate

sector width adjustment.

 177

Figure 16A. West bound traveler is at the

west edge of the sector at Time 1.

A sunrise event is detected.

Figure 16B. West has moved to the east

edge of the next sector at Time 2.

A 2
nd

 sunrise event is detected!

Figure 17A. East bound traveler is to the

west of the widened sector at Time 1.

No change in behavior.

Figure 17B. East is within the widened

sector at its east edge at Time 2.

A sunrise event is now detected!

Figure 18A. West bound traveler is at the

west edge of the narrowed sector at Time 1.

A sunrise event is detected.

Figure 18B. West is now just outside the

east edge of the next sector at Time 2,

because the sector has been narrowed at

this end.

No 2
nd

 sunrise event is detected!

 178

Section 10. Galileo's Revolution and Astronomy

Essential Questions

How can a software model of the Solar System help us understand astronomical

phenomena such as the phases of Venus, retrograde motion of Mars, and the infrequency

of solar eclipses?

Supporting Questions

Why was the discovery of the phases of Venus so controversial and so significant

historically?

How does texture mapping work?

What are the math functions needed to describe an elliptical orbit in 2D?

What adjustment does one need to make to add a 3
rd

 dimensional vertical movement to an

orbit to implement ecliptic tilt?

How do you position the camera to view simulations of astronomical events?

Description

To provide background, the instructor guides students through the use of

planetarium software, such as the proprietary Orion Starry Night or a free downloadable

equivalent. Viewing the skies from any arbitrary location on Earth (such as one's home

city) and using time-lapse settings, students view close-ups of Mercury and Venus as they

go through their Moon-like phases, and observe Mars in retrograde over a period of

roughly six months every two years.

Students then read and discuss Bertolt Brecht's play Life of Galileo, and write an

essay in response to several possible prompts described in Key Assignments. Major

 179

themes are (a) faith vs. doubt; (b) integrity vs. personal ambition; and (c) societal

responsibility.

Students build a Copernican/heliocentric simulation of the inner solar system

planets plus Jupiter, in order to view astronomical observations from various

perspectives. The simulation replicates the phases of Venus, Mars in retrograde, and

the infrequency of solar eclipses, both partial and total. Students create a 3-D

simulation and use transformations in 3 dimensions to position spherical objects

representing the sun, planets and moon. Although the simulation cannot be to scale –

because the planets would be too small to see – distances from the sun and planet sizes

are consistent relative to one another. For similar reasons, elliptical orbits are

approximated as circles. Orbital tilts for each planet and the moon are implemented

relative to the ecliptic plane. The add-on Processing library shapes3d is used to add

texture mapped skin images to the surface of the planetary spheres and to position the

entire simulation within a surrounding static sphere whose skin is a star map. Students

write methods to position and aim the camera in any direction in order to view the model

not only from Earth, the planets and the sun, but from lateral and overhead views of the

solar system. Students write methods to move the camera through a 3-D space. Finally,

students write a second program to simulate the Ptolemaic/geocentric solar system model

in order to understand what phenomena the model did and did not account for, and so

help explain its nearly 2,000 year longevity.

Key Assignments

1. Students write an essay about the play Life of Galileo in response to several possible

prompts:

 180

a. A recurrent theme in the play is FAITH vs. DOUBT. In Scene 1, Brecht discusses

this as it relates to science. In subsequent scenes, the references to faith/doubt are

related to religion and the political/social order (the nobility ruling over the peasants).

Discuss Brecht's ideas about faith and doubt as they come up during the course of the

play.

b. Galileo uses his intelligence for three things: (a) trying to find a way to live well

and be comfortable, (b) searching for scientific truth, and (c) trying to stay alive and

out of trouble with the authorities. Discuss Galileo's use of cunning (shrewdness,

cleverness, deception) to do all three as he negotiates the demands of the various

authorities from the church and state (including the university and the city) that

oppose him.

c. In Scene 7, the Little Monk argues that scientific truth should be abandoned for the

sake of the peasants. Discuss his rationale (reasoning/reasons) for this stance and

Galileo's vigorous response. Discuss the connection between this scene and the 2

lines at the end of Scene 12:

Unhappy is the land that has no hero.

Unhappy is the land that needs a hero.

2. Students write a 3-D program that places a yellow sphere (sun) in the center of the

window using transformations.

3. Students use 3-D transformations to implement a planet revolving around the sun in a

circular orbit.

4. Students implement the 4 terrestrial planets Mercury, Venus, Earth and Mars, and

the gas giant Jupiter using diameters and orbital radii relative to each other. The

 181

planets will be many times larger than scale, and all planets will orbit in the same

ecliptic plane.

5. Students implement inclinations for all planets except Earth, i.e. their orbits are tilted

relative to the ecliptic plane.

6. Students implement the Earth's Moon revolving around the Earth (diameter relative

to Earth, but orbital radius not).

7. Students implement rotation of planets, sun and moon about their axes.

8. Students implement Earth's axial tilt (23º).

9. Students collect texture mapped images of the planets, sun and moon, and implement

texture mapping so that they are drawn with realistic looking surfaces.

10. Students collect an appropriate texture mapped image of the stars to wrap on a super-

large sphere that encloses the entire simulation.

11. Students write methods to position the camera above the ecliptic plane and to its

frontal side.

12. Students implement methods to position the camera on each of the moving planets

pointing to the sun.

13. Students implement a method to view Mars from Earth.

14. Students implement a second method to view Mars from Earth, but fixing the camera

on a point far beyond Mars in order to view Mars' motion in retrograde.

15. Students implement methods to control the speed and direction of the simulation so

that the phenomena of solar eclipses can be viewed.

16. Students implement methods for moving the camera through space, rotating left and

right, up and down, and moving forwards and backwards.

 182

Teaching Strategies

Counterexamples, guided discovery and experimentation.

The heliocentric (Copernican) model of the solar system allows students to view

the complete cycle of Venus's phases as seen from Earth. The companion program that

simulates the geocentric (Ptolemaic) epicycle model demonstrates the impossibility of

observing both a completely dark and fully lit Venus. When students subsequently read

Bertolt Brecht's play Life of Galileo, they learn that it was this single celestial observation

– made possible by the newly invented telescope – that was a pivotal point in the further

erosion of papal power, already weakened by the Reformation. Although Galileo himself

was put under house arrest for the remainder of his life, his discoveries further loosened

the Church's capacity to impede the pace of science during the Renaissance.

On the pedagogic level, this unit taken in its entirety extends and clarifies

students' understanding of events 400 years old. It does so through the use of student-

written software that is able to clarify the true nature of a celestial phenomenon, one

whose logical implications had huge historic, social and political ramifications. Because

of its many facets, the unit contains multiple points at which students can make engaging

connections.

If placing problems in real-world contexts answers the question "How can I use

this knowledge?", providing historical and social contexts allows students to ask "What is

the human/societal impact?" At this point, students step back, gain perspective and look

at the big picture to observe how their work can be used and misused. This unit brings up

powerful ethical questions for scientists and engineers – such as the ethical role of the

scientist – that dwarf such standard fare concerns as intellectual property.

 183

For implementing the movement of the camera to view the simulation from

different perspectives, students use "dummy" Planet class variables named eyePlanet

and centerPlanet to hold the position and direction of the camera, respectively. In this

way, students are introduced to the use of references variables that can hold values

referring to objects. Implementing a way to observe Mars in retrograde from Earth is

done in two ways. One is to simply assign Earth to eyePlanet and Mars to centerPlanet,

the effect of which is to keep Mars statically fixed in the center of the viewport, while the

star background moves in reverse direction relative to Mars. The second is to point the

camera at Mars, then project a vector far beyond Mars (say 100 times the Earth-Mars

distance), and capture that position to store in centerPlanet. The effect of this second

strategy is to fix the camera direction on a static star background, allowing one to observe

Mars move and reverse directions. The calculation of this distant position is done with

vectors (see below).

To implement keystroke-driven camera movement for left and right rotation,

students first consider rotation around an axis parallel to the y-coordinate axis (students

will later implement rotation around an axis in any direction using matrices). Students

are introduced to the arctan function to derive the angle that the camera vector projects

onto the X-Z coordinate plane. Students learn, however, that the angles returned from

this function are doubly ambiguous because tangent values are the same for quadrant

pairs I and III, and II and IV. Therefore in order to map the correct angle, students learn

that they need to also utilize the signs of the cosine and sine values in the calculation.

Students use an Excel spreadsheet to quickly see that the arctan returns values in the

range –π/2 to π/2 (-90º to 90º). They then expand this spreadsheet to show

 184

corresponding sine, cosine and tangent values for all 360º, and the (differing) angle

values returned by arctan. Using the data from each quadrant, students write a camera

method that correctly maps degrees based on arctan, cosine and sine values as angular

position is incremented or decremented.

To implement keystroke-driven camera movement forwards and backwards,

students need to project component vectors onto all three axes, the same technique used

to calculate a distant point when viewing the retrograde motion of Mars. Students will

recognize that calculating the magnitude of these component vectors is similar to

calculating the slope between two points. To calculate the slope between any two points,

students know that it doesn't matter which point is subtracted from the other as long as

one is consistent, i.e. Δx = x
2
 – x

1
 and Δy = y

2
 – y

1
 OR Δx = x

1
 – x

2
 and Δy = y

1
 – y

2
.

This is because the signs of the two differences cancel each other when the two are

positioned as a ratio: Δy / Δx. For example, a line defined by the origin and a point in

quadrants I or III yields two positive differences or two negative differences, resulting in

a positive slope. A line similarly defined in quadrants II an IV yield one positive and one

negative difference, resulting in a negative slope.

With the component vectors, however, the order in which one subtracts the points

is critical because (a) we are calculating the effective contribution of each vector

separately, and (b) a vector has not only magnitude but direction. The instructor

therefore has students calculate the extrapolated point using both possible orientations, so

that students discover that the correct order is destination value minus source value – or

for the camera variables, centerX minus eyeX, etc. Students are asked to write a short

paragraph explaining how to do these calculations.

 185

Section 11. Molecular Modeling and DNA

Essential Questions

How can we use Molecular Modeling

software to explain how the opposing

strands of a DNA double helix are

structurally held together?

How can Molecular Modeling software

help explain how the hydrogen bonds

between the DNA bases provide the

mechanism by which genes are

faithfully replicated?

How can we use Molecular Modeling

software to help us understand how

point mutations arise?

Supporting Questions

What kinds of social and emotional obstacles might hinder scientific collaboration?

Which geometry concepts are needed to draw the DNA bases?

How can you use sine and cosine functions to determine the positions of atoms at

irregular angle positions?

What are the advantages/disadvantages in keeping many separate, but corresponding, lists

of properties rather than a list of objects, each of which contains all the properties?

What are the advantages in using superclasses and subclasses?

How can the additive trigonometry identities be used to implement rotation?

What are advantages/disadvantages to implementing translation and rotation using

math, as opposed to the transformation methods?

Is there a way to implement reflection using Processing's transformation methods?

How do you program the GUI for selection and movement of objects using the mouse?

How do you implement multiple selection?

Description

Students build a 2-D molecular modeling program to examine the hydrogen

bonding, between purine and pyrimidine bases, that holds the two anti-parallel strands of

the DNA double helix together.

The unit begins with students familiarizing themselves with the freely available

3-D molecular modeling program MolSoft ICM- Browser, and exploring ways to

configure the four DNA bases Adenosine, Guanine, Cytosine and Thymine within the

program. The molecule files will be downloaded from the NYU Library of 3-D

 186

Molecular Structures. Students then proceed to calculate the angles of the pyrimidine

(hexagon) and imidazole (pentagon) rings and use BYOB (UC Berkeley) to correctly

position each base's ring and functional group atoms. During this process, students design

their code to reflect the biochemical nomenclature of the molecule's major features. They

also abstract shared features of the molecules into common methods for building

pyrimidine rings, imidazole rings, and adding functional groups at any of the 6

pyrimidine atoms.

Once they are familiar with the structure of the 4 bases, students go about

building the 2-D molecular modeling program in Processing. They use the sine and

cosine functions to create a method to position atoms using polar coordinates. They use

getter methods to encapsulate the x- and y-coordinates of each atom. These methods

become the central repository for calculating translated, rotated, and mirrored coordinates

for each atom. Students use a geometry proof to find the additive angle formulas for sine

and cosine. These are used to derive the rotation formulas for x- and y-coordinates, which

are then implemented in the program.

Students study the chemistry of polar bonds and hydrogen bonds. They write

methods for deciding which hydrogen atoms are electropositive and which nitrogen and

oxygen atoms are electronegative. The optimal distance for intermolecular hydrogen

bonds is indicated by color and line thickness. Students program the GUI for object

selection with mouse, control key and lassoing. Move, rotate, and mirror-image actions

are driven by mouse events.

 187

At unit's end students use their programs to display normal A-T and G-C

pairings. They also perform predictive tasks, i.e. find configurations for rare A-C and G-

T pairings, which represent point mutation situations.

To anchor this project in a social setting, students study the BBC film Double

Helix, which relates the little known story of the discovery of the DNA double helix by

Watson and Crick, who used the x-ray diffraction data of the biophysicist Rosalind

Franklin for building their model. Although her data was crucial to their calculations,

which won them the Nobel Prize, they did not acknowledge her contribution until long

after her death. Students write an essay about the film in response to the prompt

described in Key Assignments.

Key Assignments

1. Lesson 1: Students study the geometry of hexagons and pentagons in order to write

a BYOB program that correctly draws the angles and bond lengths for the 4 DNA

base in pyrimidine and purine ring nomenclature atom order.

2. Lesson 2: Students organize and simplify their BYOB programs by using iteration

and sequestering duplicate code into parameterized methods that have meaningful

biological and/or chemical significance, e.g. drawPyrimidine(), drawImidazole(),

addAmine().

3. Lesson 3: Students write a Processing program – organized along the principles

learned in the BYOB lessons – that correctly displays classes for the 4 DNA bases at

the origin (translated to the center of the drawing window).

4. Lesson 4: Students modify their Processing program to implement polymorphism,

using the common parent class Molecule.

 188

5. Lesson 4: Students implement translation, so that the user can move/reposition the

DNA bases. Students program the GUI to use the Arrow keys for gross movement,

and the Ctrl + Arrow key combinations for finer movement.

6. Lesson 4: Students complete a geometric proof for the Additive Trigonometric

Identities, and use these to derive expressions for implementing 2-D rotation.

7. Lesson 4: Students implement rotation. The PageDown and PageUp keys are used

for rotation clockwise and counter-clockwise, respectively, with the option of using

them in combination with the Control key for finer movement.

8. Lesson 4: Students implement reflection, so that users can flip molecules

horizontally. The 'M' key (for "mirror") will toggle the state of the reflected

molecule.

9. Lesson 5: Students implement mouse events in the GUI. Students implement single

and multiple mouse selection using (a) clicking; (b) clicking in combination with the

Shift and Control keys; and (c) lassoing. They implement the mouse wheel for

rotation. They implement drag-and-drop.

10. Lesson 6: Students implement electropositive and electronegative chemical

properties into the bases, so that they can form – and display – intermolecular

hydrogen bonds.

11. Lesson 6: Students use the program to show the normal hydrogen bonds between A-T

and G-C, and to discover at least one configuration each for point-mutation-causing

hydrogen bonds between A-C and G-T.

12. Lesson 7: Students write an essay about the film Double Helix (a.k.a. Life Story) in

response to the prompt:

 189

The film Double Helix takes place in the years 1951-1953. At the beginning of the

story, Dr. Rosalind Franklin returns from Paris to London to take a research position

at King's College. There, as one of the few women researchers, she experiences first-

hand the effects of a work place imbued with sexist attitudes and where men have

traditionally been in charge. One of the effects of this suffocating environment is that

she feels isolated in her work.

a) Think of scenes where Franklin feels, or is in fact, isolated or marginalized (not

treated seriously or equally). Contrast these scenes with those where Franklin finds

ways out of her isolation to form connections with other supportive characters.

(b) In the film, Franklin's character resists a system that puts her at a disadvantage.

Think of scenes where these she pushes back and how effective her efforts are in

terms of successfully getting the changes (in behavior, or legally) that she might have

wanted. Analyze these actions/efforts and discuss reasons why they might have been

either effective or ineffective.

(c) At the end of the film, Bragg tells Franklin: "This race, this winning and losing,

it's not the way I was taught to do science." This remark speaks to the main

characters' motivations for doing science. Compare and contrast the motivations of

Crick, Watson, Franklin and Wilkins. Remember that the characters' motivations

refer not just to abstract issues about the pursuit of science, but equally – if not more

– about what they enjoy about their day-to-day work

Teaching Strategies

Counterexamples, guided discovery, experimentation and CONNECTIONS.

One central strategy is the use of cross-curricular concepts, especially geometry

and biology, to write a program that has both descriptive and predictive value vis-à-vis

the bonding between the anti-parallel strands of DNA. Students must connect concepts

from other disciplines in order to write an accurate 2-D molecular modeling program.

Students will also see that CS is an engineering discipline, one that can be used to solve

problems in other academic fields.

 190

Figure 19. Derivation of Additive

Trigonometric Identities

Figure 20. Derivation of Formulas for

Calculating New Coordinates after Rotation

about the Origin

One powerful example of making CONNECTIONS to other disciplines is the section

where students implement molecule rotation. Changing the coordinates of a molecule's

atom is an alternate means for rotating objects as opposed to using Processing's

transformations. To do so, students learn – through guided discovery – a geometric proof

for the Additive Trigonometric Identities, sin(α + β) and cos(α + β). Because the

prerequisite for the course is proficiency in Algebra 1, students will have already taken

concurrently the lion's share of a Geometry course – or an Algebra 2 course – by the time

this final unit is encountered near the end of the school year. Moreover, in the Around

the World unit, students have already been learned about and used the sin and cos

functions. The proof involves nothing more than using the definitions of sin and cos on a

specific right triangle, equating opposite sides, then isolating sin(α + β) and cos(α + β)

(Figure 19). Once students complete the proof, they use the identities in another

geometrically constructed diagram that sets up the theory for rotating a single point about

the origin (Figure 20). Students can now derive the formulas for the x- and y-

 191

coordinates (x2, y2) for a point (x1,y1) that is rotated about the origin by substituting in the

additive trig identities, then substituting in the definitions of sin and cos (x' = xcosβ –

ysinβ and y' = ycosβ + xsinβ). Finally, students implement these simple formulas in

their program and visually confirm that the molecules they've constructed rotate when the

programs are run. Students are thus able to see that theoretical math does indeed have

concrete applications.

